Stanley’s Zrank Problem on Skew Partitions
نویسندگان
چکیده
We present an affirmative answer to Stanley’s zrank problem, namely, the zrank and rank are equal for any skew partition. We show that certain classes of restricted Cauchy matrices are nonsingular and furthermore, the signs depend on the number of zero entries. Similar to notion of the jrank of a skew partition, we give a characterization of the rank in terms of the Giambelli type matrices of the corresponding skew Schur functions. We also show that the sign of the determinant of a factorial Cauchy matrix is uniquely determined by the number of its zero entries, which implies the nonsingularity of the inverse binomial coefficient matrix.
منابع مشابه
Stanley’s Zrank Conjecture on Skew Partitions
We present an affirmative answer to Stanley’s zrank conjecture, namely, the zrank and the rank are equal for any skew partition. We show that certain classes of restricted Cauchy matrices are nonsingular and furthermore, the signs are determined by the number of zero entries. We also give a characterization of the rank in terms of the Giambelli-type matrices of the corresponding skew Schur func...
متن کاملThe Zrank Conjecture and Restricted Cauchy Matrices
Abstract. The rank of a skew partition λ/μ, denoted rank(λ/μ), is the smallest number r such that λ/μ is a disjoint union of r border strips. Let sλ/μ(1 ) denote the skew Schur function sλ/μ evaluated at x1 = · · · = xt = 1, xi = 0 for i > t. The zrank of λ/μ, denoted zrank(λ/μ), is the exponent of the largest power of t dividing sλ/μ(1 ). Stanley conjectured that rank(λ/μ) = zrank(λ/μ). We sho...
متن کاملDescents, Peaks, and P -partitions Doctor of Philosophy
Descents, Peaks, and P -partitions A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University, Waltham, Massachusetts by T. Kyle Petersen We use a variation on Richard Stanley’s P -partitions to study “Eulerian” descent subalgebras of the group algebra of the symmetric group and of the hyperoctahedral group. In each case we give explicit structure...
متن کاملExtension of Stanley's Theorem for Partitions
In this paper we present an extension of Stanley’s theorem related to partitions of positive integers. Stanley’s theorem states a relation between “the sum of the numbers of distinct members in the partitions of a positive integer n” and “the total number of 1’s that occur in the partitions of n”. Our generalization states a similar relation between “the sum of the numbers of distinct members i...
متن کاملSkew Domino Schensted Algorithm
Using growth diagrams, we define skew domino Schensted algorithm which is a domino analogue of “Robinson-Schensted algorithm for skew tableaux” due to Sagan and Stanley. The color-to-spin property of Shimozono and White is extended. As an application, we give a simple generating function for a weighted sum of skew domino tableaux whose special case is a generalization of Stanley’s sign-imbalanc...
متن کامل